TDK Network Card iQA Series User Manual

Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Dualeta™ iQA Series DC/DC Power Modules  
48V Input, 15A Output  
Dual Output Quarter Brick  
The Dualeta™ Family is a 75W family of highly versatile,  
independently regulated, dual output quarter brick  
power modules with output voltage tracking. Its output  
current loading scheme is fully flexible: 0 to 15A can be  
drawn from either output with no minimum load  
requirements. An ultra wide range independent output  
trim allows the realization of dual output voltage  
combinations between 1.5 and 5.5V. The superior  
versatility of the Dualeta™ family substantially reduces  
the quantity of distinct part numbers in the end user part  
portfolio, lowering cost of ownership.  
Features  
Monotonic, tracking start-up  
Starts with pre-biased outputs  
High reliability open frame, surface  
mount construction  
Standard Dual Quarter Brick format  
A single module which can support  
all your dual voltage requirements  
between 1.5V and 5.5V  
Baseplate for improved thermal  
management  
UL 60950 (US and Canada), VDE 0805,  
CB scheme (IEC950)  
Two output trim options:  
o
Standard Dual Trim – wide range  
independent adjustment of either  
output, using two trim pins  
o
Optional Single Tracking Trim –  
adjust both outputs together by 10%  
according to industry standard  
resistor tables  
Patented Technology  
Options  
Optional Single Tracking Trim – using  
industry standard resistor tables  
Remote on/off (negative logic)  
Short Thru-hole pins 2.79 mm (0.110”)  
Independently regulated, tight  
tolerance outputs  
Flexible loading: 0-15A from either  
output, 15A total load  
High efficiency – up to 89%  
Industry-leading output power: 75W  
Basic insulation – 1500 Vdc  
Full, auto-recovery protection:  
o
o
o
o
o
Input under and over voltage  
Output over voltage  
Current limit  
Short circuit  
Thermal limit  
©2001-2006 Innoveta™ Technologies, Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
1/19  
(877) 498-0099  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Mechanical Specification  
Dimensions are in mm [in]. Unless otherwise specified tolerances are: x.x 0.5 [0.02], x.xx and x.xxx 0.25 [0.010].  
Recommended Hole Pattern: (top view)  
Pin Assignment:  
PIN FUNCTION PIN FUNCTION  
1
2
Vin (+)  
On/Off (-)  
5
6
Output RTN  
Vo1 Trim (Optional:  
Single tracking trim pin)  
Vo1 (+)  
Vo2 Trim (Optional: Omit  
for single trim pin option)  
3
4
Vin (-)  
Vo2 (+)  
7
A
©2001-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
3/19  
(877) 498-0099  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Absolute Maximum Ratings:  
Stress in excess of Absolute Maximum Ratings may cause permanent damage to the device.  
Characteristic  
Min  
-0.5  
---  
Max  
80  
Unit  
Vdc  
Vdc  
Notes & Conditions  
100mS max.  
Continuous Input Voltage  
Transient Input Voltage  
100  
Isolation Voltage  
Input to Output  
Input to Baseplate  
Output to Baseplate  
---  
---  
---  
1500  
1500  
500  
Vdc  
Vdc  
Vdc  
Basic insulation  
Basic insulation  
Operational insulation  
Storage Temperature  
-55  
-40  
125  
˚C  
Operating Temperature Range (Tc)  
105*  
˚C  
Maximum baseplate temperature.  
* Engineering estimate.  
Input Characteristics:  
Unless otherwise specified, specifications apply over all Rated Input Voltage, Resistive Load, and Temperature conditions.  
Characteristic  
Min  
36  
Typ  
48  
---  
Max  
75  
Unit  
Vdc  
A
Notes & Conditions  
Operating Input Voltage  
Maximum Input Current  
Turn-on Voltage  
Turn-off Voltage  
Hysteresis  
---  
3.0*  
---  
Vin = 0 to Vin,max  
---  
34  
32  
2
Vdc  
Vdc  
Vdc  
30*  
0.5*  
---  
---  
Vo = 0 to 0.1*Vo,nom; On/Off =on,  
Io=Io,max, Tc=25˚C  
Startup Delay Time from application of input voltage  
Startup Delay Time from on/off  
Output Voltage Rise Time  
---  
---  
---  
---  
12  
10  
50  
---  
---  
---  
mS  
mS  
mS  
A2s  
Vo = 0 to 0.1*Vo,nom; Vin = Vi,nom,  
Io=Io,max,Tc=25˚C  
Io=Io,max,Tc=25˚C, Vo=0.1 to  
0.9*Vo,nom  
---  
Inrush Transient  
0.1  
See input/output ripple measurement  
figure; BW = 5 MHz  
Input Reflected Ripple  
---  
---  
15  
---  
---  
mApp  
dB  
Input Ripple Rejection  
50*  
@120Hz  
*Engineering Estimate  
Caution: The power modules are not internally fused. An external input line normal blow fuse with a maximum value of  
10A is required; see the Safety Considerations section of the data sheet.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
4/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Data:  
iQA48015A033M: 3.3V/2.5V, 15A Output  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes & Conditions  
Output Voltage Initial Setpoint  
Vin=Vin,nom; Io=Io,max; Tc = 25˚C  
Vout1  
Vout2  
3.25  
2.46  
3.3  
2.5  
3.35  
2.54  
Vdc  
Vdc  
Output Voltage Tolerance  
Vout1  
Vout2  
Over all rated input voltage, load, and  
temperature conditions to end of life  
3.20  
2.42  
3.3  
2.5  
3.40  
2.58  
Vdc  
Vdc  
Efficiency  
83*  
85  
---  
%
Vin=Vin,nom; Io1=7.5A, Io2=7.5A;  
Tc = 25˚C  
Line Regulation  
---  
---  
---  
0
2
5
5*  
15*  
75*  
15  
mV  
mV  
mV  
A
Vin=Vin,min to Vin,max  
Io=Io,min to Io,max  
Load Regulation  
Temperature Regulation  
Output Current  
10  
---  
Tc=Tc,min to Tc,max  
Sum of output currents, Io1+Io2  
Output Current Limiting Threshold  
Short Circuit Current  
---  
---  
19  
3
---  
---  
A
A
Vo1 = 0.9*Vo,nom, Tc<Tc,max  
Vo = 0.25V, Tc = 25˚C; average output  
current in current limit hiccup mode  
Output Ripple and Noise Voltage  
Vout1  
Vout2  
Measured with 47uF Tantalum and 1uF  
ceramic external capacitance – see  
input/output ripple measurement figure; BW =  
20MHz  
---  
---  
30  
25  
80  
70  
mVpp  
mvpp  
Vout1  
Vout2  
---  
---  
10  
10  
---  
---  
mVrms  
mVrms  
Output Voltage Adjustment Range  
Tracking trim option  
90  
---  
110  
%Vout,nom %Vout,nom  
di/dt = 0.1A/uS, Vin=Vin,nom; load step from  
Dynamic Response:  
Recovery Time  
---  
---  
0.1  
80  
---  
---  
mS  
50% to 75% of Io,max, either output  
Transient Voltage  
mV  
Output Voltage Overshoot during startup  
Io=Io,max,Tc=25˚C  
Vout1  
Vout2  
---  
---  
250  
150  
---  
---  
mV  
mV  
Switching Frequency  
---  
280  
---  
kHz  
Fixed  
Output Over Voltage Protection  
Tracking trim option  
Vo1  
Vo2  
3.7  
2.9  
---  
---  
5.0*  
4.0*  
V
V
External Load Capacitance  
Isolation Capacitance  
0
---  
1000  
---  
5000*&  
---  
uF  
pF  
---  
10  
Isolation Resistance  
---  
M  
*Engineering Estimate  
& Contact Innoveta for applications that require additional capacitance or very low ESR capacitor banks.  
©2002-2005 TDK Innoveta Inc.  
(877) 498-0099  
5/19  
iQAFullDatasheet080505 2.doc 8/3/2006  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Characteristics:  
iQA48015A033M: 3.3V/2.5V, 15A Output  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
12  
10  
8
6
4
2
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Output Current (% full load) Io1=Io2  
Output Current (% full load) Io1=Io2  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Typical Efficiency vs. Input Voltage at Ta=25°C.  
Typical Power Dissipation vs. Input Voltage at Ta=25°C.  
3.305  
3.3  
2.505  
2.5  
3.295  
3.29  
2.495  
2.49  
3.285  
2.485  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Output Current Io1 (A), Io2 = 0A  
Output Current Io2 (A), Io1 = 0A  
Typical Output 1 Voltage vs. Load Current at Ta = 25°C.  
Typical Output 2 Voltage vs. Load Current at Ta = 25°C.  
Typical startup characteristic from On/Off application at full load.  
CH3-On/Off, CH1-Vo1, CH2-Vo2  
Typical startup characteristic from input voltage application at full  
load. CH3-Vin, CH1-Vo1, CH2-Vo2  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
6/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Characteristics (continued):  
iQA48015A033M: 3.3V/2.5V, 15A Output  
Typical Vo1 load transient response. Io1 step from 3.75A  
to 7.5A with 0.1A/uS, Io2=7.5A. CH1 – Vo1, CH2 – Vo2,  
CH4 – Io1.  
Typical Vo2 load transient response. Io2 step from 3.75A  
to 7.5A with 0.1A/uS, Io1=7.5A. CH1 – Vo1, CH2 – Vo2,  
CH4 – Io2.  
3.4  
3.35  
3.3  
2.6  
2.55  
2.5  
3.25  
2.45  
3.2  
2.4  
10 11 12 13 14 15 16 17 18 19 20  
10 11 12 13 14 15 16 17 18 19 20  
Output Current Io1 (A), Io2 = 0A  
Output Current Io2 (A), Io1 = 0A  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Typical Output 1 Current Limit Characteristics vs. Input  
Voltage at Ta=25 degrees.  
Typical Output 2 Current Limit Characteristics vs. Input  
Voltage at Ta=25 degrees.  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
25 30 35 40 45 50 55 60 65 70 75  
Input Voltage (V)  
Io1 = Io2 = 0A  
Io1 = Io2 = 3.75A  
Io1 = Io2 = 7.5A  
Typical Output Ripple at nominal Input voltage and full  
balanced load currents at Ta=25 degrees.  
Typical Input Current vs. Input Voltage Characteristics.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
7/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Characteristics (continued):  
iQA48015A033M: 3.3V/2.5V, 15A Output  
3.5  
3
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
25 30 35 40 45 50 55 60 65 70 75  
25 30 35 40 45 50 55 60 65 70 75  
Input Voltage (V)  
Input Voltage (V)  
Io1 = Io2 = 0A  
Io1 = Io2 = 3.75A  
Io1 = Io2 = 7.5A  
Io1 = Io2 = 0A  
Io1 = Io2 = 3.75A  
Io1 = Io2 = 7.5A  
Typical Vo1 Output Voltage vs. Input Voltage  
Characteristics  
Typical Vo2 Output Voltage vs. Input Voltage  
Characteristics  
Trim up – tracking trim option  
Trim from  
nominal (%)  
+1  
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
0
46  
20.4  
12.1  
7.9  
5.2  
3.5  
2.2  
1.3  
.61  
Rup (k)  
Rup is connected between Trim and RTN.  
Trim down – tracking trim option  
Trim from  
nominal (%)  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0
56.9  
25  
13.8  
8.8  
5.8  
3.8  
2.3  
1.3  
.43  
Rdown (k)  
Rdown is connected between Trim and Vout2.  
Trim resistor values for output voltage adjustment – tracking trim option.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
8/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Data:  
iQA48015A050M: 5V/3.3V, 15A Output  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes & Conditions  
Output Voltage Initial Setpoint  
Vin=Vin,nom; Io=Io,max; Tc = 25˚C  
Vout1  
Vout2  
4.92  
3.25  
5
3.3  
5.08  
3.35  
Vdc  
Vdc  
Output Voltage Tolerance  
Vout1  
Vout2  
Over all rated input voltage, load, and  
temperature conditions to end of life  
4.85  
3.2  
5
3.3  
5.15  
3.4  
Vdc  
Vdc  
Efficiency  
86*  
87.5  
---  
%
Vin=Vin,nom; Io1=7.5A, Io2=7.5A;  
Tc = 25˚C  
Line Regulation  
---  
---  
---  
0
2
5
5*  
15*  
75*  
15  
mV  
mV  
mV  
A
Vin=Vin,min to Vin,max  
Io=Io,min to Io,max  
Load Regulation  
Temperature Regulation  
Output Current  
10  
---  
Tc=Tc,min to Tc,max  
Sum of output currents, Io1+Io2  
Output Current Limiting Threshold  
Short Circuit Current  
---  
---  
17  
3
---  
---  
A
A
Vo1 = 0.9*Vo,nom, Tc<Tc,max  
Vo = 0.25V, Tc = 25˚C; average output  
current in current limit hiccup mode  
Output Ripple and Noise Voltage  
Vout1  
Vout2  
Measured with 47uF Tantalum and 1uF  
ceramic external capacitance – see  
input/output ripple measurement figure; BW =  
20MHz  
---  
---  
40  
35  
80  
70  
mVpp  
mvpp  
Vout1  
Vout2  
---  
---  
10  
10  
---  
---  
mVrms  
mVrms  
Output Voltage Adjustment Range  
Dual independent trim – standard  
Tracking trim option  
Vout2 < (Vo1-0.3V)  
Either output  
%Vout,nom %Vout,nom  
1.5  
90  
---  
---  
5.5  
110  
Vdc  
Dynamic Response:  
Recovery Time  
di/dt = 0.1A/uS, Vin=Vin,nom; load step from  
50% to 75% of Io,max, either output  
---  
---  
0.1  
---  
---  
mS  
mV  
Transient Voltage  
100  
Output Voltage Overshoot during startup  
Io=Io,max,Tc=25˚C  
Vout1  
Vout2  
---  
---  
250  
150  
---  
---  
mV  
mV  
Switching Frequency  
---  
280  
---  
kHz  
Fixed  
Output Over Voltage Protection  
Dual independent trim – standard  
Vo1  
Vo2  
5.6  
---  
---  
Vo1  
6.7*  
---  
V
V
Tracking trim option  
Vo1  
Vo2  
5.6  
3.7  
---  
---  
7.5*  
5.2*  
V
V
External Load Capacitance  
Isolation Capacitance  
0
---  
1000  
---  
5000*&  
---  
uF  
pF  
---  
10  
Isolation Resistance  
---  
MΩ  
*Engineering Estimate  
& Contact TDK Innoveta for applications that require additional capacitance or very low ESR capacitor banks.  
©2002-2005 TDK Innoveta Inc.  
(877) 498-0099  
9/19  
iQAFullDatasheet080505 2.doc 8/3/2006  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Characteristics:  
iQA48015A050M: 5V/3.3V, 15A Output  
12  
11  
10  
9
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
8
7
6
5
4
3
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Current (% Full Load) Io1=Io2  
Output Current (% Full Load) Io1=Io2  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Typical Efficiency vs. Input Voltage at Ta=25°C.  
Typical Power Dissipation vs. Input Voltage at Ta=25°C.  
5.02  
3.32  
5.015  
5.01  
5.005  
5
3.315  
3.31  
3.305  
3.3  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Output Current Io1 (A), Io2 = 0A  
Output Current Io2 (A), Io1 = 0A  
Typical Output 1 Voltage vs. Load Current at Ta = 25°C.  
Typical Output 2 Voltage vs. Load Current at Ta = 25°C.  
Typical startup characteristic from On/Off application at full load.  
CH3-On/Off, CH1-Vo1, CH2-Vo2  
Typical startup characteristic from input voltage application at full  
load. CH3-Vin, CH1-Vo1, CH2-Vo2  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
10/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Characteristics (continued):  
iQA48015A050M: 5V/3.3V, 15A Output  
Typical Vo1 load transient response. Io1 step from 3.75A  
to 7.5A with 0.1A/uS, Io2=7.5A. CH1 – Vo1, CH2 – Vo2,  
CH4 – Io1.  
Typical Vo2 load transient response. Io2 step from 3.75A  
to 7.5A with 0.1A/uS, Io1=7.5A. CH1 – Vo1, CH2 – Vo2,  
CH4 – Io2.  
3.4  
3.35  
3.3  
5.1  
5.05  
5
3.25  
3.2  
4.95  
4.9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Output Current Io2 (A), Io1 = 0A  
Output Current Io1 (A), Io2 = 0A  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Vin = 36V  
Vin = 48V  
Vin = 75V  
Typical Output 1 Current Limit Characteristics vs. Input  
Voltage at Ta=25 degrees.  
Typical Output 2 Current Limit Characteristics vs. Input  
Voltage at Ta=25 degrees.  
2.5  
2
1.5  
1
0.5  
0
25 30 35 40 45 50 55 60 65 70 75  
Input Voltage (V)  
Io1 = Io2 = 0A  
Io1 = Io2 = 3.75A  
Io1 = Io2 = 7.5A  
Typical Output Ripple at nominal Input voltage and full  
balanced load currents at Ta=25 degrees.  
Typical Input Current vs. Input Voltage Characteristics.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
11/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Electrical Characteristics (continued):  
iQA48015A050M: 5V/3.3V, 15A Output  
6
5
4
3
2
1
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
25 30 35 40 45  
50 55 60 65 70 75  
25 30 35 40 45 50 55 60 65 70 75  
Input Voltage (V)  
Input Voltage (V)  
Io1 = Io2 = 0A  
Io1 = Io2 = 3.75A  
Io1 = Io2 = 7.5A  
Io1 = Io2 = 0A  
Io1 = Io2 = 3.75A  
Io1 = Io2 = 7.5A  
Typical Vo1 Output Voltage vs. Input Voltage  
Characteristics  
Typical Vo2 Output Voltage vs. Input Voltage  
Characteristics  
Trim up – independent trim  
Trim down – independent trim  
Vout1 (V)  
5.15  
5.25  
5%  
5.35  
7%  
5.5  
Vout1 (V)  
4.5  
3.3  
2.5  
1.8  
Trim from  
3%  
10%  
Trim from  
10%  
34%  
50%  
64%  
nominal (%Vo)  
nominal (%Vo)  
318  
194  
141  
101  
26  
4.8  
2.0  
0.69  
Rup1 (k)  
Rdown1 (k)  
Rup1 is connected between Trim1 and Vout1.  
Rdown1 is connected between Trim1 and RTN.  
Vout2 (V)  
3.63  
4.0  
4.5  
5
Vout2 (V)  
2.97  
2.5  
1.8  
1.5  
Trim from  
10%  
21%  
36%  
52%  
Trim from  
10%  
24%  
45%  
55%  
nominal (%Vo)  
nominal (%Vo)  
55  
28  
18  
14  
26  
8.5  
2.7  
1.5  
Rup2 (k)  
Rdown2 (k)  
Rup2 is connected between Trim2 and Vout2.  
Rdown2 is connected between Trim2 and RTN.  
3.01Vonom (100 + %Vo)  
301 + 4.01(%Vo)  
301 4.01 (%Vo)  
Rup =   
1000  
Rdown =  
1000  
1.225 (%Vo)  
%Vo  
%Vo  
Trim up resistor values for output voltage adjustment –  
standard wide trim version.  
Trim down resistor values for output voltage adjustment –  
standard wide trim version.  
Trim up – tracking trim option  
Trim from  
nominal (%)  
+1  
+2  
+3  
14  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
0
50  
23  
9.2  
6.4  
4.5  
3.1  
2.1  
1.3  
Rup (k)  
Rup is connected between Trim and RTN.  
Trim down – tracking trim option  
Trim from  
nominal (%)  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0
67  
30  
17  
11  
7.8  
5.4  
3.7  
2.4  
1.4  
Rdown (k)  
Rdown is connected between Trim and Vout2.  
Trim resistor values for output voltage adjustment – tracking trim option.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
12/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Thermal Performance:  
iQA48015A050M: 5V/3.3V, 15A Output  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Ambient Temperature (C)  
Ambient Temperature (C)  
NC (60lf m)  
300 LFM  
100 LFM  
400 LFM  
200 LFM  
600 LFM  
NC (60lfm)  
300 LFM  
100 LFM  
400 LFM  
200 LFM  
600 LFM  
Maximum balanced load (Io1=Io2) output current vs.  
Maximum Io1 output current (Io2=0) vs. ambient  
ambient temperature at nominal input voltage for airflow  
rates natural convection (60lfm) to 600lfm with airflow from  
pin 3 to pin 1.  
temperature at nominal input voltage for airflow rates  
natural convection (60lfm) to 400lfm with air flow from pin 3  
to pin 1.  
16  
14  
12  
10  
8
6
4
2
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
Ambient Temperature (C)  
NC (60lf m)  
300 LFM  
100 LFM  
400 LFM  
200 LFM  
600 LFM  
Maximum Io2 output current (Io1=0) vs. ambient  
temperature at nominal input voltage for airflow rates  
natural convection (60lfm) to 400lfm with air flow from pin 3  
to pin 1.  
The thermal curves provided and the example given above are based upon measurements made in Innoveta’s  
experimental test setup that is described in the Thermal Management section. Due to the large number of variables in  
system design, Innoveta recommends that the user verify the module’s thermal performance in the end application.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
13/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
direction can have a significant impact on  
the module’s thermal performance.  
Thermal Management:  
An important part of the overall system  
design process is thermal management;  
thermal design must be considered at all  
levels to ensure good reliability and lifetime  
of the final system. Superior thermal design  
and ability to operate in severe application  
environments are key elements of a robust,  
reliable power module.  
Thermal Derating:  
For proper application of the power module  
in a given thermal environment, output  
current derating curves are provided as a  
design guideline in the  
Adjacent PCB  
Module  
Centerline  
A finite amount of heat must be dissipated  
from the power module to the surrounding  
environment. This heat is transferred by the  
three modes of heat transfer: convection,  
conduction and radiation. While all three  
modes of heat transfer are present in every  
application, convection is the dominant  
mode of heat transfer in most applications.  
However, to ensure adequate cooling and  
proper operation, all three modes should be  
considered in a final system configuration.  
A
I
R
F
L
12.7  
(0.50)  
O
W
76 (3.0)  
The open frame design of the power module  
provides an air path to individual  
components. This air path improves heat  
conduction and convection to the  
surrounding environment, which reduces  
areas of heat concentration and resulting hot  
spots.  
AIRFLOW  
Air Velocity and Ambient  
Air Passage  
Centerline  
Temperature Measurement  
Location  
Test Setup  
The thermal performance data of the power  
module is based upon measurements  
obtained from a wind tunnel test with the  
setup shown below. This thermal test setup  
replicates the typical thermal environments  
encountered in most modern electronic  
systems with distributed power  
architectures. The electronic equipment in  
optical networking, telecom, wireless and  
advanced computer systems operate in  
similar environments and utilize vertically  
mounted PCBs or circuit cards in cabinet  
racks.  
Wind Tunnel Test Setup  
Dimensions are in millimeters and (inches).  
Thermal Performance section. The module  
temperature should be measured in the final  
system configuration to ensure proper  
thermal management of the power module.  
In all conditions, the power module should  
be operated below the maximum operating  
temperature shown on the de-rating curve.  
For improved design margins and enhanced  
system reliability, the power module may be  
operated at temperatures below the  
The power module, as shown in the figure,  
is mounted on a printed circuit board (PCB)  
and is vertically oriented within the wind  
tunnel. The cross section of the airflow  
passage is rectangular. The spacing  
between the top of the module or heatsink  
(where applicable) and a parallel facing PCB  
is kept at a constant (0.5 in). The power  
module orientation with respect to the airflow  
maximum rated operating temperature.  
Heat transfer by convection can be  
enhanced by increasing the airflow rate that  
the power module experiences. The  
maximum output current of the power  
module is a function of ambient temperature  
(TAMB) and airflow rate as shown in the  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
14/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
thermal performance figures in the Thermal  
Performance section. The curves in the  
figures are shown for natural convection  
through 3 m/s (600 ft/min). The data for the  
natural convection condition has been  
collected at 0.3 m/s (60 ft/min) of airflow,  
which is the typical airflow generated by  
other heat dissipating components in many  
of the systems that these types of modules  
are used in. In the final system  
The system designer must use an accurate  
estimate or actual measure of the internal  
airflow rate and temperature when doing the  
heatsink thermal analysis. For each  
application, a review of the heatsink fin  
orientation should be completed to verify  
proper fin alignment with airflow direction to  
maximize the heatsink effectiveness. For  
Innoveta standard heatsinks, contact  
Innoveta Technologies for latest  
configurations, the airflow rate for the natural  
convection condition can vary due to  
temperature gradients from other heat  
dissipating components.  
performance data.  
Operating Information  
Heatsink Usage: For applications with  
demanding environmental requirements,  
such as higher ambient temperatures or  
higher power dissipation, the thermal  
performance of the power module can be  
improved by attaching a heatsink or cold  
plate. The iQA platform is designed with a  
base plate with four M3 X 0.5 through-  
threaded mounting fillings for attaching a  
heatsink or cold plate. The addition of a  
heatsink can reduce the airflow requirement,  
ensure consistent operation and extend  
reliability of the system. With improved  
thermal performance, more power can be  
delivered at a given environmental condition.  
Over-Current Protection  
The power modules have current limit  
protection to protect the module during  
output overload and short circuit conditions.  
During overload conditions, the power  
modules may protect themselves by  
entering a hiccup current limit mode. The  
modules will operate normally once the  
output current returns to the specified  
operating range. There is a typical delay of  
100mS from the time an overload condition  
appears at the module output until the  
hiccup mode will occur.  
Output Over-Voltage Protection  
The power modules have a control circuit,  
independent of the primary control loop that  
reduces the risk of over voltage appearing at  
the output of the power module during a  
fault condition. If there is a fault in the  
primary regulation loop, the over voltage  
protection circuitry will cause the power  
module to enter a hiccup over-voltage mode  
once it detects that the output voltage has  
reached the level indicated in the Electrical  
Data section for the power module of  
interest. When the condition causing the  
over-voltage is corrected, the module will  
operate normally.  
Standard heatsink kits are available from  
Innoveta Technologies for vertical module  
mounting in two different orientations  
(longitudinal – perpendicular to the direction  
of the pins and transverse – parallel to the  
direction of the pins) as shown in the  
heatsink Offering section. The heatsink kit  
contains four M3 x 0.5 steel mounting  
screws and a precut thermal interface pad  
for improved thermal resistance between the  
power module and the heatsink. The  
screws should be installed using a torque-  
limiting driver set between 0.35-0.55 Nm (3-  
5 in-lbs).  
Thermal Protection  
During heatsink assembly, the base-plate to  
heatsink interface must be carefully  
managed. A thermal pad may be required to  
reduce mechanical-assembly-related  
stresses and improve the thermal  
connection. Please contact Innoveta  
Engineering for recommendations on this  
subject.  
When the power module exceeds the  
maximum operating temperature, the  
module may turn-off to safeguard the power  
unit against thermal damage. The module  
will auto restart as the unit is cooled below  
the over temperature threshold.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
15/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Remote On/Off  
Two trim configurations are offered on the  
The power modules have an internal remote  
On/Off circuit. The user must supply an  
open-collector or compatible switch between  
the Vin (-) pin and the On/Off pin. The  
maximum voltage generated by the power  
module at the on/off terminal is 15V. The  
maximum allowable leakage current of the  
switch is 50uA. The switch must be  
capable of maintaining a low signal Von/off  
< 1.2V while sinking 1mA.  
iQA-series. The standard Dual Independent  
Trim offers wide range independent  
adjustment of either output, using two trim  
pins. The optional Single Tracking Trim  
adjusts both outputs together by 10%  
according to industry standard resistor  
tables. Only a single trim pin is provided.  
Dual independent Trim  
Vo1(+)  
The standard on/off logic is positive logic.  
The power module will turn on if the On/Off  
is left open and will be off if the On/Off is  
connected to Vin (-). If the positive logic  
circuit is not being used, the On/Off should  
be left open.  
Vo2(+)  
Trim2  
Trim1  
Rdown1  
Rdown2  
RTN  
An optional negative logic is available. The  
power module will turn on if the On/Off  
terminal is connected to Vin (-), and it will be  
off if the On/Off is left open. If the negative  
logic feature is not being used, On/Off  
should be shorted to Vin (-).  
Circuit to decrease output voltage  
With a resistor between the trim and RTN  
terminals, the output voltage is adjusted  
down. To adjust the output voltage down a  
percentage of Vout (%Vo) from Vo,nom, the  
trim resistor should be chosen according to  
the following equation:  
Vin (+)  
On/ Off  
301 4.01 (%Vo)  
Rdown =  
1000  
Vin(-)  
%Vo  
The current limit set point does not increase  
as the module is trimmed down, so the  
available output power is reduced.  
On/Off Circuit for positive or negative  
logic  
Vo1(+)  
Vo2(+)  
Output Voltage Adjustment  
The output voltages of the power module  
may be adjusted by using an external  
resistor connected between the Trim  
terminal and either the Vo (+) or RTN  
terminal. If the output voltage adjustment  
feature is not used, the Trim pin(s) should  
be left open. Care should be taken to avoid  
injecting noise into the power module’s trim  
pin. A small 0.01uF capacitor between the  
power module’s trim pin and RTN pin may  
help avoid this.  
Rup1  
Rup2  
Trim2  
Trim1  
RTN  
Circuit to increase output voltage  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
16/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
With a resistor between the trim and Vo (+)  
terminals, the output voltage is adjusted up.  
To adjust the output voltage up a  
percentage of Vout (%Vo) from Vo,nom the  
trim resistor should be chosen according to  
the following equation:  
Vo1(+)  
Vo2(+)  
Trim  
RTN  
Rup  
3.01 Vonom (100 + %Vo)  
301 + 4.01 (%Vo)  
Rup =   
1000  
1.225 (%Vo)  
%Vo  
The maximum power available from the  
power module is fixed. As the output  
voltage is trimmed up, the maximum output  
current must be decreased to maintain the  
maximum rated power of the module.  
Circuit to increase output voltage  
With a resistor between the Trim and RTN  
terminals, the output voltage is adjusted up.  
Refer to the resistor selection tables in the  
Electrical Characteristics section for trim  
adjustment.  
As the output voltage is trimmed, the output  
over-voltage set point is not adjusted.  
Trimming the output voltage too high may  
cause the output over voltage protection  
circuit to be triggered.  
The maximum power available from the  
power module is fixed. As the output  
voltage is trimmed up, the maximum output  
current must be decreased to maintain the  
maximum rated power of the module.  
Optional Tracking Trim  
Vo1(+)  
As the output voltage is trimmed, the output  
over-voltage set point is not adjusted.  
Trimming the output voltage too high may  
cause the output over voltage protection  
circuit to be triggered.  
Vo2(+)  
Rdown  
(Vo2,nom<2V)  
Rdown  
(Vo2,nom>=2V)  
Trim  
RTN  
EMC Considerations: Innoveta power  
modules are designed for use in a wide  
variety of systems and applications. For  
assistance with designing for EMC  
compliance, please contact Innoveta  
technical support.  
Circuit to decrease output voltage  
With a resistor between the trim and Vo2(+)  
terminals, the output voltage is adjusted  
down. For models where the nominal set  
point of Vo2 is < 2V, the resistor is instead  
tied from trim to Vo1(+). Refer to the  
Input Impedance:  
The source impedance of the power feeding  
the DC/DC converter module will interact  
with the DC/DC converter. To minimize the  
interaction, a 10-100uF input electrolytic  
capacitor should be present if the source  
inductance is greater than 4uH.  
resistor selection tables in the Electrical  
Characteristics section for trim adjustment.  
The current limit set point does not increase  
as the module is trimmed down, so the  
available output power is reduced.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
17/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Input/Output Ripple and Noise Measurements  
12uH  
1
2
Battery  
+
+
Voutput  
-
RLoad  
Cext  
Vinput  
-
33uF  
220uF  
esr<0.1  
100KHz  
esr<0.7  
100KHz  
Ground Plane  
The input reflected ripple is measured with a current probe and oscilloscope. The ripple current is the current through the  
12uH inductor.  
The output ripple measurement is made approximately 9 cm (3.5 in.) from the power module using an oscilloscope and  
BNC socket. The capacitor Cext is located about 5 cm (2 in.) from the power module; its value varies from code to code  
and is found on the electrical data page for the power module of interest under the ripple & noise voltage specification in  
the Notes & Conditions column.  
Reliability  
The power modules are designed using TDK Innoveta’s stringent design guidelines for  
component derating, product qualification, and design reviews. Early failures are screened out by  
both burn-in and an automated final test.  
Improper handling or cleaning processes can adversely affect the appearance, testability, and  
reliability of the power modules. Contact Innoveta technical support for guidance regarding  
proper handling, cleaning, and soldering of TDK Innoveta’s power modules.  
Quality  
TDK Innoveta’s product development process incorporates advanced quality planning tools such  
as FMEA and Cpk analysis to ensure designs are robust and reliable. All products are  
assembled at ISO certified assembly plants.  
Warranty  
TDK Innoveta’s comprehensive line of power solutions includes efficient, high-density DC-DC  
converters. TDK Innoveta offers a three-year limited warranty. Complete warranty information is  
listed on our web site or is available upon request from TDK Innoveta.  
©2002-2005 TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006  
(877) 498-0099  
18/19  
 
Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick  
Safety Considerations  
For safety agency approval of the system in which the DC-DC power module is installed, the  
power module must be installed in compliance with the creepage and clearance requirements of  
the safety agency. The isolation is basic insulation. For applications requiring basic insulation,  
care must be taken to maintain minimum creepage and clearance distances when routing traces  
near the power module.  
As part of the production process, the power modules are hi-pot tested from primary and  
secondary at a test voltage of 1500Vdc.  
To preserve maximum flexibility, the power modules are not internally fused. An external input  
line normal blow fuse with a maximum value of 15A is required by safety agencies. A lower value  
fuse can be selected based upon the maximum dc input current and maximum inrush energy of  
the power module.  
When the supply to the DC-DC converter is less than 60Vdc, the power module meets all of the  
requirements for SELV. If the input voltage is a hazardous voltage that exceeds 60Vdc, the  
output can be considered SELV only if the following conditions are met:  
1) The input source is isolated from the ac mains by reinforced insulation.  
2) The input terminal pins are not accessible.  
3) One pole of the input and one pole of the output are grounded or both are kept floating.  
4) Single fault testing is performed on the end system to ensure that under a single fault,  
hazardous voltages do not appear at the module output.  
3320 Matrix Drive  
Information furnished by TDK Innoveta is believed to be accurate and reliable. However, TDK Innoveta assumes no  
Suite 100  
responsibility for its use, nor for any infringement of patents or other rights of third parties, which may result from its use.  
Richardson, Texas 75082  
No license is granted by implication or otherwise under any patent or patent rights of TDK Innoveta. TDK Innoveta  
components are not designed to be used in applications, such as life support systems, wherein failure or malfunction  
Phone (877) 498-0099 Toll Free  
could result in injury or death. All sales are subject to TDK Innoveta’s Terms and Conditions of Sale, which are available  
(469) 916-4747  
upon request. Specifications are subject to change without notice.  
Fax  
(877) 498-0143 Toll Free  
(214) 239-3101  
is a trademark or registered trademark of TDK Corporation.  
(877) 498-0099  
©2004 TDK Innoveta® Inc.  
iQAFullDatasheet080505_2.doc 8/3/2006 Revision 2.0  
19/19  
 

Tektronix Ventilation Hood 1730 Series User Manual
TERK Technologies Stereo System TV32 User Manual
Toastmaster Coffeemaker RH12DSBCAN User Manual
Traulsen Freezer RCV232WUT FHS User Manual
Tricity Bendix Cooktop SE554 User Manual
ViewSonic Projection Television VS15052 User Manual
Vision Fitness Treadmill T9800 User Manual
Vizio Universal Remote P283V1 User Manual
VTech Telephone CS5113 User Manual
Vulcan Hart Range FK User Manual